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In the following F denotes the field R or C.

1 Definition and some properties

Definition 1. A function f : [a, b] → F is said to be of bounded variation if there exists Mf > 0

such that for every partition P : a = t0 < t1 < · · · < tn = b of [a, b],

V (f, P ) :=
n∑

i=1

|f(ti)− f(ti−1| ≤Mf .

The quantity V (f, P ) is called the variation of f over P , and

V (f) := sup
P
V (f, P )

is called the total variation of f . ♦

The set of functions of bounded variation on [a, b] is denoted by BV [a, b].

Observe the following:

• f ∈ BV [a, b] ⇐⇒ V (f) <∞.

• For f ∈ BV [a, b],

V (f) = 0 ⇐⇒ f is a contant function.

Remark 2. If F = C and f ∈ BV [a, b]∩C[a, b], then V (f) can be thought of as length of the curve

t 7→ f(t). ♦

THEOREM 3. If f, g ∈ BV [a, b] and α ∈ F, then f + g, αf ∈ BV [a, b] and

V (f + g) ≤ V (f) + V (g), V (αf) = |α|V (f).

Proof. Let f, g ∈ BV [a, b] and α ∈ F. Then for every partition P of [a, b], we have

V (f + g, P ) ≤ V (f, P ) + V (g, P ) ≤ V (f) + V (g), V (αf, P ) = |α|V (f, P ).

Taking supremum over all such partitions, we obtain

V (f + g) ≤ V (f) + V (g), V (αf) = |α|V (f).

Hence, f + g, αf ∈ BV [a, b].
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THEOREM 4. For every f ∈ BV [a, b],

sup
a≤t≤b

|f(t)| ≤ |f(a)|+ V (f).

In particular,

BV [a, b] ⊆ B[a, b]

and

‖f‖∞ ≤ |f(a)|+ V (f) ∀ f ∈ BV [a, b].

Proof. Let f ∈ BV [a, b]. For t ∈ (a, b), consider the partition P = {a, t, b}. Then we have

|f(x)− f(a)| ≤ V (f, P ) ≤ V (f).

Hence,

|f(x)| ≤ |f(a)|+ V (f)|.

Hence the results follow.

THEOREM 5. The set BV [a, b] is a linear space and

‖f‖BV := |f(a)|+ V (f)

defines a norm on BV [a, b], and BV [a, b] is a Banach space with respect to the norm ‖f‖BV .

Proof. Recall that for f ∈ BV [a, b], V (f) = 0 if and only if f is a constant function. Hence,

‖f‖BV = 0 ⇐⇒ f = 0.

Now the facts that BV [a, b] is a linear space and ‖ · ‖BV is a norm on it follow from Theorem 3 and

Theorem 4.

It remains to show that ‖ · ‖BV is a complete norm. For this, let (fn) be a Cauchy sequence with

respect to ‖ · ‖BV . So, for ε > 0, there exists N ∈ N such that

|fn(a)− fm(a)|+ V (fn − fm) < ε ∀m,n ≥ N. (∗)

Hence, by Theorem 4, (fn) is a Cauchy sequence in BV [a, b]. Since BV [a, b] is a Banach space with

respect to ‖ · ‖, there exists f ∈ B[a, b] such that

fn − f‖∞ → 0 as n→∞. In particular, fn → f pointwise. Therefore, for every partition P of [a, b],

|fn(a)− f(a)|+ V (fn − fm, P ) = lim
m→∞

{|fn(a)− fm(a)|+ V (fn − fm, P )}.

Hence, by (∗),
|fn(a)− f(a)|+ V (fn − fm, P ) ≤ ε ∀n ≥ N.

Since this is true for every partition of [a, b], it follows that fn − f ∈ BV [a, b], and in particular,

f = fn − (fn − f) ∈ BV [a, b], and

‖fn − f‖BV = |fn(a)− f(a)|+ V (fn − fm) ≤ ε ∀n ≥ N.

Thus, (fn) converges to f ∈ BV [a, b] with respect to ‖ · ‖BV .
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THEOREM 6. Let f ∈ BV [a, b] be a real valued function. Then there exists a monotonically

increasing function g : [a, b] → R such that both g and g − f are monotonically increasing. In

particular, f is difference of two monotonically increasing functions.

Proof. For [a, d] ⊆ [a, b], let V d
c (f) be the total variation of f on [a, d]. Then it can be verified that

for any t ∈ [a, b],

V b
a (f) = V t

a (f) + V b
t (f).

Hence, for a ≤ t < s ≤ b,
V s
a (f)− V t

a (f) = V s
t (f) ≥ |f(s)− f(t)|.

Hence, the function g(t) := V t
a (f) is monotonically increasing. We also have

g(s)− g(t) = V s
a (f)− V t

a (f) = V s
t (f) ≥ |f(s)− f(t)| ≥ f(s)− f(t).

Hence

g(s)− f(s) ≥ g(t)− f(t).

Therefore, g − f is also monotonically increasing. Clearly, every monotonically increasing function

belongs to BV [a, b]. Thus, f = g − h with h := g − f , where g and h are monotonically increasing

functions.

For more results on functions of bounded variation, one may refer Chapter 13 in [1]

2 Riemann-Stieltjes integral

Recall from the theory of Riemann-Stieltjes integral:

Definition 7. A function f : [a, b] → R is Riemann-Stieltjes integrable with respect to a a

monotonically increasing function v : [a, b]→ R, if there exists γ ∈ R such that for every ε > 0, there

exists δ > 0 satisfying

|S(P,∆)− γ| < ε

whenever

|P | := max
i

(ti − ti−1) < δ

for every partition P : a = t0 < t1 < . . . < tk = b of [a, b] and for a set ∆ := {τj} of tags on P , that

is, with τj ∈ [tj−1, tj ], j = 1, . . . , k, where the Riemann-Stieltjes sum S(P,∆) is defined by

S(P,∆) :=

k∑
i=1

f(τi)[v(ti)− v(ti−1)],

and in that case the number γ is called the Riemann-Stieltjes integral of f with respect to v, and it

is denoted by

∫ b

a

fdv. ♦
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If f is Riemann-Stieltjes integrable, then we write∫ b

a

fdv = lim
|P |→0

S(P,∆).

The following theorem is known.

THEOREM 8. Every real valued f ∈ C[a, b] is Riemann-Stieltjes integrable with respect to any

monotonically increasing function.

Definition 9. A function f : [a, b]→ F is Riemann-Stieltjes integrable with respect to a function

ϕ ∈ BV [a, b], if there exists γ ∈ F such that for every ε > 0, there exists δ > 0 satisfying

|S(P,∆)− γ| < ε

whenever

|P | := max
i

(ti − ti−1) < δ

for every partition P : a = t0 < t1 < . . . < tk = b of [a, b] and for a set ∆ := {τj} of tags on P , where

S(P,∆) :=

k∑
i=1

f(τi)[ϕ(ti)− ϕ(ti−1)],

and in that case the number γ is called the Riemann-Stieltjes integral of f with respect to ϕ, and it

is denoted by

∫ b

a

fdϕ. ♦

In view of Theorem 6 and Theorem 10, we have the following theorem.

THEOREM 10. Every F-valued f ∈ C[a, b] is Riemann-Stieltjes integrable with respect to any

ϕ ∈ BV [a, b].

If f ∈ C[a, b] and ϕ ∈ BV [a, b], then for every partition P on [a, b] and for every set ∆ of tags on

P , we have ∣∣∣∣∣
k∑

i=1

f(τi)[ϕ(ti)− ϕ(ti−1)]

∣∣∣∣∣ ≤
k∑

i=1

|f(τi)| |[ϕ(ti)− ϕ(ti−1)]| ≤ ‖f‖∞V (ϕ).

Hence, it follows that ∣∣∣∣∣
∫ b

a

fdϕ

∣∣∣∣∣ ≤ ‖f‖∞V (ϕ).

In particular, we see that, for each ϕ ∈ BV [a, b], the map F : C[a, b]→ F defined by

F (f) =

∫ b

a

fdϕ, f ∈ C[a, b],

is a continuous linear functional on C[a, b] with respect to ‖ · ‖∞, and

‖F‖ ≤ V (ϕ).
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3 The space NBV [a, b]

An important subspace of BV [a, b] is the space of all normalized functions of bounded variation,

defined by

NBV [a, b] = {ϕ ∈ BV [a, b] : ϕ(a) = 0, and ϕ is right continuous on [a, b)}.

Thus, ϕ ∈ NBV [a, b] if and only if ϕ(a) = 0 and for every t ∈ [a, b),

ϕ(t+) := lim
h→0+

ϕ(t+ h) = ϕ(t).

It can be easily shown that

THEOREM 11. NBV [a, b] is a closed subspace of BV [a, b].

In fact, every continuous linear functional F on C[a, b] can be uniquely represented by a function

ϕF ∈ NBV [a, b] and the map F 7→ ϕF is a surjective linear isometry. (cf. Limaye [2] or Nair [3]).

Exercise 12. Prove the following.

1. If µ is a Borel measure on [a, b], then ϕ defined by ϕ(t) = µ([a, t]) and ϕ(a) = 0 belongs to

BV [a, b].

2. The function ϕ defined by ϕ(0) = 0 and ϕ(t) = t sin(1/t) for 0 < t ≤ 1 is continuous but does

not belong to BV [0, 1].

3. For a < c < b, the function ϕ = χ[c,b] belongs to NBV [a, b].

♦
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